Никелевая спираль электроплитки имеет длину 5 м. Никелиновую спираль электроплитки заменили на нихромовую

Очень часто при желании сделать или отремонтировать нагреватель электропечи своими руками у человека появляется много вопросов. Например, какого диаметра взять проволоку, какова должна быть ее длина или какую мощность можно получить, используя проволоку или ленту с заданными параметрами и т.д. При правильном подходе к решению данного вопроса необходимо учитывать достаточно много параметров, например, силу тока, проходящего через нагреватель , рабочую температуру, тип электрической сети и другие.

В данной статье приводятся справочные данные о материалах, наиболее распространенных при изготовлении нагревателей электрических печей , а также методика и примеры их расчета (расчета нагревателей электрических печей).

Нагреватели. Материалы для изготовления нагревателей

Непосредственно нагреватель – один из самых важных элементов печи, именно он осуществляет нагрев, имеет наибольшую температуру и определяет работоспособность нагревательной установки в целом. Поэтому нагреватели должны соответствовать ряду требований, которые приведены ниже.

Требования к нагревателям

Основные требования к нагревателям (материалам нагревателей):
  • Нагреватели должны обладать достаточной жаростойкостью (окалиностойкостью) и жаропрочностью. Жаропрочность - механическая прочность при высоких температурах. Жаростойкость - сопротивление металлов и сплавов газовой коррозии при высоких температурах (более подробно свойства жаростойкости и жаропорочности описаны на странице ).
  • Нагреватель в электропечи должен быть сделан из материала, обладающего высоким удельным электрическим сопротивлением. Говоря простым языком, чем выше электрическое сопротивление материала, тем сильнее он нагревается. Следовательно, если взять материал с меньшим сопротивлением, то потребуется нагреватель большей длины и с меньшей площадью поперечного сечения. Не всегда в печи может быть размещен достаточно длинный нагреватель. Также стоит учитывать, что, чем больше диаметр проволоки, из которой сделан нагреватель, тем дольше срок его службы . Примерами материалов, обладающих высоким электрическим сопротивлением являются хромоникелевый сплав , , железохромоалюминиевый сплав , которые относятся к прецизионным сплавам с высоким электрическим сопротивлением.
  • Малый температурный коэффициент сопротивления является существенным фактором при выборе материала для нагревателя. Это означает, что при изменении температуры электрическое сопротивление материала нагревателя меняется не сильно. Если температурный коэффициент электросопротивления велик, для включения печи в холодном состоянии приходится использовать трансформаторы, дающие в начальный момент пониженное напряжение.
  • Физические свойства материалов нагревателей должны быть постоянными. Некоторые материалы, например карборунд, который является неметаллическим нагревателем, с течением времени могут изменять свои физические свойства, в частности электрическое сопротивление, что усложняет условия их эксплуатации. Для стабилизации электрического сопротивления используют трансформаторы с большим количеством ступеней и диапазоном напряжений.
  • Металлические материалы должны обладать хорошими технологическими свойствами, а именно: пластичностью и свариваемостью, - чтобы из них можно было изготовить проволоку , ленту , а из ленты - сложные по конфигурации нагревательные элементы. Также нагреватели могут быть изготовлены из неметаллов. Неметаллические нагреватели прессуются или формуются, превращаясь в готовое изделие.

Материалы для изготовления нагревателей

Наиболее подходящими и самыми используемыми в производстве нагревателей для электропечей являются прецизионные сплавы с высоким электрическим сопротивлением . К ним относятся сплавы на основе хрома и никеля (хромоникелевые ), железа, хрома и алюминия (железохромоалюминиевые ). Марки и свойства данных сплавов рассмотрены в «Сплавы прецизионные. Марки» . Представителями хромоникелевых сплавов является марок Х20Н80, Х20Н80-Н (950-1200 °С), Х15Н60, Х15Н60-Н (900-1125 °С), железохромоалюминиевых – марок Х23Ю5Т (950-1400 °С), Х27Ю5Т (950-1350 °С), Х23Ю5 (950-1200 °С), Х15Ю5 (750-1000 °С). Также существуют железохромоникелевые сплавы - Х15Н60Ю3, Х27Н70ЮЗ.

Перечисленные выше сплавы обладают хорошими свойствами жаропрочности и жаростойкости, поэтому они могут работать при высоких температурах. Хорошую жаростойкость обеспечивает защитная пленка из окиси хрома, которая образуется на поверхности материала. Температура плавления пленки выше температуры плавления непосредственно сплава, она не растрескивается при нагреве и охлаждении.

Приведем сравнительную характеристику нихрома и фехрали.
Достоинства нихрома:

  • хорошие механические свойства как при низких, так и при высоких температурах;
  • сплав крипоустойчив;
  • имеет хорошие технологические свойства – пластичность и свариваемость;
  • хорошо обрабатывается;
  • не стареет, немагнитен.
Недостатки нихрома:
  • высокая стоимость никеля - одного из основных компонентов сплава;
  • более низкие рабочие температуры по сравнению с фехралью.
Достоинства фехрали:
  • более дешевый сплав по сравнению с нихромом, т.к. не содержит ;
  • обладает лучшей по сравнению с нихромом жаростойкостью, напрмер, фехраль Х23Ю5Т может работать при температуре до 1400 °С (1400 °С - максимальная рабочая температура для нагревателя из проволоки Ø 6,0 мм и более; Ø 3,0 - 1350 °С; Ø 1,0 - 1225 °С; Ø 0,2 - 950 °С).
Недостатки фехрали:
  • хрупкий и непрочный сплав, данные негативные свойства особенно сильно проявляются после пребывания сплава при температуре большей 1000 °С;
  • т.к. фехраль имеет в своем составе железо, то данный сплав является магнитным и может ржаветь во влажной атмосфере при нормальной температуре;
  • имеет низкое сопротивление ползучести;
  • взаимодействует с шамотной футеровкой и окислами железа;
  • во время эксплуатации нагреватели из фехрали существенно удлиняются.
Также сравнение сплавов фехраль и нихром производится в статье .

В последнее время разработаны сплавы типа Х15Н60Ю3 и Х27Н70ЮЗ, т.е. с добавлением 3% алюминия, что значительно улучшило жаростойкость сплавов, а наличие никеля практически исключило имеющиеся у железохромоалюминиевых сплавов недостатки. Сплавы Х15Н60ЮЗ, Х27Н60ЮЗ не взаимодействуют с шамотом и окислами железа, достаточно хорошо обрабатываются, механически прочны, нехрупки. Максимальная рабочая температура сплава Х15Н60ЮЗ составляет 1200 °С.

Помимо перечисленных выше сплавов на основе никеля, хрома, железа, алюминия для изготовления нагревателей применяют и другие материалы: тугоплавкие металлы, а также неметаллы.

Среди неметаллов для изготовления нагревателей используют карборунд, дисилицид молибдена, уголь, графит. Нагреватели из карборунда и дисилицида молибдена используют в высокотемпературных печах. В печах с защитной атмосферой применяют угольные и графитовые нагреватели.

Среди тугоплавких материалов в качестве нагревателей могут использоваться , , тантал и ниобий. В высокотемпературных вакуумных печах и печах с защитной атмосферой применяются нагреватели из молибдена и вольфрама . Молибденовые нагреватели могут работать до температуры 1700 °С в вакууме и до 2200 °С – в защитной атмосфере. Такая разница температур обусловлена испарением молибдена при температурах выше 1700 °С в вакууме. Вольфрамовые нагреватели могут работать до 3000 °С. В особых случаях применяют нагреватели из тантала и ниобия.

Расчет нагревателей электрических печей

Обычно в качестве исходных данных для выступают мощность, которую должны обеспечивать нагреватели, максимальная температура, которая требуется для осуществления соответствующего технологического процесса (отпуска, закалки, спекания и т.д.) и размеры рабочего пространства электрической печи. Если мощность печи не задана, то ее можно определить по эмпирическому правилу. В ходе расчета нагревателей требуется получить диаметр и длину (для проволоки) или площадь сечения и длину (для ленты), которые необходимы для изготовления нагревателей .

Также необходимо определить материал, из которого следует делать нагреватели (данный пункт в статье не рассматривается). В данной статье в качестве материала для нагревателей рассматривается хромоникелевый прецизионный сплав с высоким электрическим сопротивлением , который является одним из самых популярных при изготовлении нагревательных элементов.

Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной мощности печи (простой расчет)

Пожалуй, наиболее простым вариантом расчета нагревателей из нихрома является выбор диаметра и длины при заданной мощности нагревателя, питающего напряжения сети, а также температуры, которую будет иметь нагреватель. Несмотря на простоту расчета, в нем имеется одна особенность, на которую мы обратим внимание ниже.

Пример расчета диаметра и длины нагревательного элемента

Исходные данные:
Устройство мощностью P = 800 Вт; напряжение сети U = 220 В; температура нагревателя 800 °C. В качестве нагревательного элемента используется нихромовая проволока Х20Н80.

1. Сначала необходимо определить силу тока, которая будет проходить через нагревательный элемент:
I = P / U = 800 / 220 = 3,63 А.

2. Теперь нужно найти сопротивление нагревателя:
R = U / I = 220 / 3,63 = 61 Ом;

3. Исходя из значения полученной в п. 1 силы тока, проходящего через нихромовый нагреватель , нужно выбрать диаметр проволоки. И этот момент является важным. Если, например, при силе тока в 6 А использовать нихромовую проволоку диаметром 0,4 мм, то она сгорит. Поэтому, рассчитав силу тока, необходимо выбрать из таблицы соответствующее значение диаметра проволоки. В нашем случае для силы тока 3,63 А и температуры нагревателя 800 °C выбираем нихромовую проволоку с диаметром d = 0,35 мм и площадью поперечного сечения S = 0,096 мм 2 .

Общее правило выбора диаметра проволоки можно сформулировать следующим образом: необходимо выбрать проволоку, у которой допустимая сила тока не меньше, чем расчетная сила тока, проходящего через нагреватель. С целью экономии материала нагревателя следует выбирать проволоку с ближайшей большей (чем расчетная) допустимой силой тока .

Таблица 1

Допустимая сила тока, проходящего через нагреватель из нихромовой проволоки, соответствующая определенным температурам нагрева проволоки, подвешенной горизонтально в спокойном воздухе нормальной температуры
Диаметр , мм Площадь поперечного сечения нихромовой проволоки, мм 2 Температура нагрева нихромовой проволоки, °C
200 400 600 700 800 900 1000
Максимальная допустимая сила тока, А
5 19,6 52 83 105 124 146 173 206
4 12,6 37,0 60,0 80,0 93,0 110,0 129,0 151,0
3 7,07 22,3 37,5 54,5 64,0 77,0 88,0 102,0
2,5 4,91 16,6 27,5 40,0 46,6 57,5 66,5 73,0
2 3,14 11,7 19,6 28,7 33,8 39,5 47,0 51,0
1,8 2,54 10,0 16,9 24,9 29,0 33,1 39,0 43,2
1,6 2,01 8,6 14,4 21,0 24,5 28,0 32,9 36,0
1,5 1,77 7,9 13,2 19,2 22,4 25,7 30,0 33,0
1,4 1,54 7,25 12,0 17,4 20,0 23,3 27,0 30,0
1,3 1,33 6,6 10,9 15,6 17,8 21,0 24,4 27,0
1,2 1,13 6,0 9,8 14,0 15,8 18,7 21,6 24,3
1,1 0,95 5,4 8,7 12,4 13,9 16,5 19,1 21,5
1,0 0,785 4,85 7,7 10,8 12,1 14,3 16,8 19,2
0,9 0,636 4,25 6,7 9,35 10,45 12,3 14,5 16,5
0,8 0,503 3,7 5,7 8,15 9,15 10,8 12,3 14,0
0,75 0,442 3,4 5,3 7,55 8,4 9,95 11,25 12,85
0,7 0,385 3,1 4,8 6,95 7,8 9,1 10,3 11,8
0,65 0,342 2,82 4,4 6,3 7,15 8,25 9,3 10,75
0,6 0,283 2,52 4 5,7 6,5 7,5 8,5 9,7
0,55 0,238 2,25 3,55 5,1 5,8 6,75 7,6 8,7
0,5 0,196 2 3,15 4,5 5,2 5,9 6,75 7,7
0,45 0,159 1,74 2,75 3,9 4,45 5,2 5,85 6,75
0,4 0,126 1,5 2,34 3,3 3,85 4,4 5,0 5,7
0,35 0,096 1,27 1,95 2,76 3,3 3,75 4,15 4,75
0,3 0,085 1,05 1,63 2,27 2,7 3,05 3,4 3,85
0,25 0,049 0,84 1,33 1,83 2,15 2,4 2,7 3,1
0,2 0,0314 0,65 1,03 1,4 1,65 1,82 2,0 2,3
0,15 0,0177 0,46 0,74 0,99 1,15 1,28 1,4 1,62
0,1 0,00785 0,1 0,47 0,63 0,72 0,8 0,9 1,0

Примечание :
  • если нагреватели находятся внутри нагреваемой жидкости, то нагрузку (допустимую силу тока) можно увеличить в 1,1 - 1,5 раза;
  • при закрытом расположении нагревателей (например, в камерных электропечах) необходимо уменьшить нагрузки в 1,2 - 1,5 раза (меньший коэффициент берется для более толстой проволоки, больший - для тонкой).
4. Далее определим длину нихромовой проволоки.
R = ρ · l / S ,
где R - электрическое сопротивление проводника (нагревателя) [Ом], ρ - удельное электрическое сопротивление материала нагревателя [Ом · мм 2 / м], l - длина проводника (нагревателя) [мм], S - площадь поперечного сечения проводника (нагревателя) [мм 2 ].

Таким образом, получим длину нагревателя:
l = R · S / ρ = 61 · 0,096 / 1,11 = 5,3 м.

В данном примере в качестве нагревателя используется нихромовая проволока Ø 0,35 мм. В соответствии с "Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия" номинальное значение удельного электрического сопротивления нихромовой проволоки марки Х20Н80 составляет 1,1 Ом · мм 2 / м (ρ = 1,1 Ом · мм 2 / м), см. табл. 2.

Итогом расчетов является необходимая длина нихромовой проволоки, которая составляет 5,3 м, диаметр - 0,35 мм.

Таблица 2

Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной печи (подробный расчет)

Расчет, представленный в данном пункте, является более сложным, чем выше. Здесь мы учтем дополнительные параметры нагревателей, попытаемся разобраться с вариантами подключения нагревателей к сети трехфазного тока. Расчет нагревателя будем проводить на примере электрической печи. Пусть исходными данными являются внутренние размеры печи.

1. Первое, что необходимо сделать - посчитать объем камеры внутри печи. В данном случае возьмем h = 490 мм, d = 350 мм и l = 350 мм (высота, ширина и глубина соответственно). Таким образом, получаем объем V = h · d · l = 490· 350 · 350 = 60 · 10 6 мм 3 = 60 л (мера объема).

2. Далее необходимо определить мощность, которую должна выдавать печь. Мощность измеряется в Ваттах (Вт) и определяется по эмпирическому правилу : для электрической печи объемом 10 - 50 литров удельная мощность составляет 100 Вт/л (Ватт на литр объема), объемом 100 - 500 литров - 50 - 70 Вт/л. Возьмем для рассматриваемой печи удельную мощность 100 Вт/л. Таким образом мощность нагревателя электрической печи должна составлять P = 100 · 60 = 6000 Вт = 6 КВт.

Стоит отметить, что при мощности 5-10 кВт нагреватели изготовляют, обычно, однофазными. При больших мощностях для равномерной загрузки сети нагреватели делают трехфазными.

3. Затем нужно найти силу тока, проходящего через нагреватель I = P / U , где P - мощность нагревателя, U - напряжение на нагревателе (между его концами), и сопротивление нагревателя R = U / I .

Здесь может быть два варианта подключения к электрической сети :

  • к бытовой сети однофазного тока - тогда U = 220 В;
  • к промышленной сети трехфазного тока - U = 220 В (между нулевым проводом и фазой) или U = 380 В (между двумя любыми фазами).
Далее расчет будет проведен отдельно для однофазного и трехфазного подключения.

I = P / U = 6000 / 220 = 27,3 А - ток проходящий через нагреватель.
Затем необходимо определить сопротивление нагревателя печи.
R = U / I = 220 / 27,3 = 8,06 Ом.

Рисунок 1 Проволочный нагреватель в сети однофазного тока

Искомые значения диаметра проволоки и ее длины будут определены в п. 5 данного параграфа.

При данном типе подключения нагрузка распределяется равномерно на три фазы, т.е. по 6 / 3 = 2 КВт на фазу. Таким образом, нам требуется 3 нагревателя. Далее необходимо выбрать способ подключения непосредственно нагревателей (нагрузки). Способов может быть 2: “ЗВЕЗДА” или “ТРЕУГОЛЬНИК”.

Стоит заметить, что в данной статье формулы для расчета силы тока (I ) и сопротивления (R ) для трехфазной сети записаны не в классическом виде. Это сделано для того, чтобы не усложнять изложение материала по расчету нагревателей электротехническими терминами и определениями (например, не упоминаются фазные и линейные напряжения и токи и соотношения между ними). С классическим подходом и формулами расчета трехфазных цепей можно ознакомиться в специализированной литературе. В данной статье некоторые математические преобразования, проведенные над классическими формулами, скрыты от читателя, и на конечный результат это не оказывает никакого влияния.

При подключении типа “ЗВЕЗДА” нагреватель подключается между фазой и нулем (см. рис. 2). Соответственно, напряжение на концах нагревателя будет U = 220 В.
I = P / U = 2000 / 220 = 9,10 А.
R = U / I = 220 / 9,10 = 24,2 Ом.

Рисунок 2 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме "ЗВЕЗДА"

При подключении типа “ТРЕУГОЛЬНИК” нагреватель подключается между двумя фазами (см. рис. 3). Соответственно, напряжение на концах нагревателя будет U = 380 В.
Ток, проходящий через нагреватель -
I = P / U = 2000 / 380 = 5,26 А.
Сопротивление одного нагревателя -
R = U / I = 380/ 5,26 = 72,2 Ом.

Рисунок 3 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме "ТРЕУГОЛЬНИК"

4. После определения сопротивления нагревателя при соответствующем подключении к электрической сети необходимо подобрать диаметр и длину проволоки .

При определении указанных выше параметров необходимо анализировать удельную поверхностную мощность нагревателя , т.е. мощность, которая выделяется с единицы площади. Поверхностная мощность нагревателя зависит от температуры нагреваемого материала и от конструктивного выполнения нагревателей.

Пример
Из предыдущих пунктов расчета (см. п. 3 данного параграфа) нам известно сопротивление нагревателя. Для 60 литровой печи при однофазном подключении оно составляет R = 8,06 Ом. В качестве примера возьмем диаметром 1 мм. Тогда, чтобы получить требуемое сопротивление, необходимо l = R / ρ = 8,06 / 1,4 = 5,7 м нихромовой проволоки, где ρ - номинальное значение электрического сопротивления 1 м проволоки по , [Ом/м]. Масса данного отрезка проволоки из нихрома составит m = l · μ = 5,7 · 0,007 = 0,0399 кг = 40 г, где μ - масса 1 м проволоки. Теперь необходимо определить площадь поверхности отрезка проволоки длиной 5,7 м. S = l · π · d = 570 · 3,14 · 0,1 = 179 см 2 , где l – длина проволоки [см], d – диаметр проволоки [см]. Таким образом, с площади 179 см 2 должно выделяться 6 кВт. Решая простую пропорцию, получаем, что с 1 см 2 выделяется мощность β = P / S = 6000 / 179 = 33,5 Вт, где β - поверхностная мощность нагревателя.

Полученная поверхностная мощность слишком велика. Нагреватель расплавится, если нагреть его до температуры, которая обеспечила бы полученное значение поверхностной мощности. Данная температура будет выше температуры плавления материала нагревателя.

Приведенный пример является демонстрацией неправильного выбора диаметра проволоки, которая будет использоваться для изготовления нагревателя. В п. 5 данного параграфа будет приведен пример с правильным подбором диаметра.

Для каждого материала в зависимости от требуемой температуры нагрева определено допустимое значение поверхностной мощности. Оно может определяться с помощью специальных таблиц или графиков. В данных расчетах используются таблицы.

Для высокотемпературных печей (при температуре более 700 – 800 °С) допустимая поверхностная мощность, Вт/м 2 , равна β доп = β эф · α , где β эф – поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды [Вт / м 2 ], α – коэффициент эффективности излучения. β эф выбирается по таблице 3, α - по таблице 4.

Если печь низкотемпературная (температура менее 200 – 300 °С), то допустимую поверхностную мощность можно считать равной (4 - 6) · 10 4 Вт/м 2 .

Таблица 3

Эффективная удельная поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды
Температура тепловоспринимающей поверхности, °С β эф, Вт/cм 2 при температуре нагревателя, °С
800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350
100 6,1 7,3 8,7 10,3 12,5 14,15 16,4 19,0 21,8 24,9 28,4 36,3
200 5,9 7,15 8,55 10,15 12,0 14,0 16,25 18,85 21,65 24,75 28,2 36,1
300 5,65 6,85 8,3 9,9 11,7 13,75 16,0 18,6 21,35 24,5 27,9 35,8
400 5,2 6,45 7,85 9,45 11,25 13,3 15,55 18,1 20,9 24,0 27,45 35,4
500 4,5 5,7 7,15 8,8 10,55 12,6 14,85 17,4 20,2 23,3 26,8 34,6
600 3,5 4,7 6,1 7,7 9,5 11,5 13,8 16,4 19,3 22,3 25,7 33,7
700 2 3,2 4,6 6,25 8,05 10,0 12,4 14,9 17,7 20,8 24,3 32,2
800 - 1,25 2,65 4,2 6,05 8,1 10,4 12,9 15,7 18,8 22,3 30,2
850 - - 1,4 3,0 4,8 6,85 9,1 11,7 14,5 17,6 21,0 29,0
900 - - - 1,55 3,4 5,45 7,75 10,3 13 16,2 19,6 27,6
950 - - - - 1,8 3,85 6,15 8,65 11,5 14,5 18,1 26,0
1000 - - - - - 2,05 4,3 6,85 9,7 12,75 16,25 24,2
1050 - - - - - - 2,3 4,8 7,65 10,75 14,25 22,2
1100 - - - - - - - 2,55 5,35 8,5 12,0 19,8
1150 - - - - - - - - 2,85 5,95 9,4 17,55
1200 - - - - - - - - - 3,15 6,55 14,55
1300 - - - - - - - - - - - 7,95

Таблица 4

Проволочные спирали, полузакрытые в пазах футеровки

Проволочные спирали на полочках в трубках

Проволочные зигзагообразные (стержневые) нагреватели

Предположим, что температура нагревателя 1000 °С, и хотим нагреть заготовку до температуры 700 °С. Тогда по таблице 3 подбираем β эф = 8,05 Вт/см 2 , α = 0,2, β доп = β эф · α = 8,05 · 0,2 = 1,61 Вт/см 2 = 1,61 · 10 4 Вт/м 2 .

5. После определения допустимой поверхностной мощности нагревателя необходимо найти его диаметр (для проволочных нагревателей) или ширину и толщину (для ленточных нагревателей), а также длину .

Диаметр проволоки можно определить по следующей формуле: d - диаметр проволоки, [м]; P - мощность нагревателя, [Вт]; U - напряжение на концах нагревателя, [В]; β доп - допустимая поверхностная мощность нагревателя, [Вт/м 2 ]; ρ t - удельное сопротивление материала нагревателя при заданной температуре, [Ом·м].
ρ t = ρ 20 · k , где ρ 20 - удельное электрическое сопротивление материала нагревателя при 20 °С, [Ом·м] k - поправочный коэффициент для расчета изменения электрического сопротивления в зависимости от температуры (по ).

Длину проволоки можно определить по следующей формуле:
l - длина проволоки, [м].

Подберем диаметр и длину проволоки из нихрома Х20Н80 . Удельное электрическое сопротивление материала нагревателя составляет
ρ t = ρ 20 · k = 1,13 · 10 -6 · 1,025 = 1,15 · 10 -6 Ом·м.

Бытовая сеть однофазного тока
Для 60 литровой печи, подключенной к бытовой сети однофазного тока, из предыдущих этапов расчета известно, что мощность печи составляет P = 6000 Вт, напряжение на концах нагревателя - U = 220 В, допустимая поверхностная мощность нагревателя β доп = 1,6 · 10 4 Вт/м 2 . Тогда получаем

Полученный размер необходимо округлить до ближайшего большего стандартного. Стандартные размеры для проволоки из нихрома и фехрали можно найти в , Приложение 2, Таблица 8 . В данном случае, ближайшим большим стандартным размером является Ø 2,8 мм. Диаметр нагревателя d = 2,8 мм.

Длина нагревателя l = 43 м.

Также иногда требуется определить массу необходимого количества проволоки.
m = l · μ , где m - масса отрезка проволоки, [кг]; l - длина проволоки, [м]; μ - удельная масса (масса 1 метра проволоки), [кг/м].

В нашем случае масса нагревателя m = l · μ = 43 · 0,052 = 2,3 кг.

Данный расчет дает минимальный диаметр проволоки, при котором она может быть использована в качестве нагревателя при заданных условиях . С точки зрения экономии материала такой расчет является оптимальным. При этом также может быть использована проволока большего диаметра, но тогда ее количество возрастет.

Проверка
Результаты расчета могут быть проверены следующим способом. Был получен диаметр проволоки 2,8 мм. Тогда нужная нам длина составит
l = R / (ρ · k) = 8,06 / (0,179 · 1,025) = 43 м, где l - длина проволоки, [м]; R - сопротивление нагревателя, [Ом]; ρ - номинальное значение электрического сопротивления 1 м проволоки, [Ом/м]; k - поправочный коэффициент для расчета изменения электрического сопротивления в зависимости от температуры.
Данное значение совпадает со значением, полученным в результате другого расчета.

Теперь необходимо проверить, не превысит ли поверхностная мощность выбранного нами нагревателя допустимую поверхностную мощность, которая была найдена в п. 4. β = P / S = 6000 / (3,14 · 4300 · 0,28) = 1,59 Вт/см 2 . Полученное значение β = 1,59 Вт/см 2 не превышает β доп = 1,6 Вт/см 2 .

Итоги
Таким образом, для нагревателя потребуется 43 метра нихромовой проволоки Х20Н80 диаметром 2,8 мм, это составляет 2,3 кг.

Промышленная сеть трехфазного тока
Также можно найти диаметр и длину проволоки, необходимой для изготовления нагревателей печи, подключенной к сети трехфазного тока.

Как описано в п. 3, на каждый из трех нагревателей приходится по 2 КВт мощности. Найдем диаметр, длину и массу одного нагревателя.

Подключение типа “ЗВЕЗДА” (см. рис. 2)

В данном случае, ближайшим большим стандартным размером является Ø 1,4 мм. Диаметр нагревателя d = 1,4 мм.

Длина одного нагревателя l = 30 м.
Масса одного нагревателя m = l · μ = 30 · 0,013 = 0,39 кг.

Проверка
Был получен диаметр проволоки 1,4 мм. Тогда нужная нам длина составит
l = R / (ρ · k) = 24,2 / (0,714 · 1,025) = 33 м.

β = P / S = 2000 / (3,14 · 3000 · 0,14) = 1,52 Вт/см 2 , она не превышает допустимую.

Итоги
Для трех нагревателей, подключенных по схеме “ЗВЕЗДА”, потребуется
l = 3 · 30 = 90 м проволоки, что составляет
m = 3 · 0,39 = 1,2 кг.

Подключение типа “ТРЕУГОЛЬНИК” (см. рис. 3)

В данном случае, ближайшим большим стандартным размером является Ø 0,95 мм. Диаметр нагревателя d = 0,95 мм.

Длина одного нагревателя l = 43 м.
Масса одного нагревателя m = l · μ = 43 · 0,006 = 0,258 кг.

Проверка
Был получен диаметр проволоки 0,95 мм. Тогда нужная нам длина составит
l = R / (ρ · k) = 72,2 / (1,55 · 1,025) = 45 м.

Данное значение практически совпадает со значением, полученным в результате другого расчета.

Поверхностная мощность составит β = P / S = 2000 / (3,14 · 4300 · 0,095) = 1,56 Вт/см 2 , она не превышает допустимую.

Итоги
Для трех нагревателей, подключенных по схеме “ТРЕУГОЛЬНИК”, потребуется
l = 3 · 43 = 129 м проволоки, что составляет
m = 3 · 0,258 = 0,8 кг.

Если сравнить 2 рассмотренных выше варианта подключения нагревателей к сети трехфазного тока, то можно заметить, что для “ЗВЕЗДЫ” требуется проволока большего диаметра, чем для “ТРЕУГОЛЬНИКА” (1,4 мм против 0,95 мм), чтобы обеспечить заданную мощность печи 6 кВт. При этом требуемая длина нихромовой проволоки при подключении по схеме “ЗВЕЗДА” меньше длины проволоки при подключении типа “ТРЕУГОЛЬНИК” (90 м против 129 м), а требуемая масса, наоборот, больше (1,2 кг против 0,8 кг).

Расчет спирали

При эксплуатации основная задача - это разместить нагреватель расчетной длины в ограниченном пространстве печи. Нихромовая и фехралевая проволока подвергаются навивке в виде спиралей или сгибанию в форме зигзагов, лента сгибается в форме зигзагов, что позволяет вместить большее количество материала (по длине) в рабочую камеру. Наиболее распространенным вариантом является спираль .

Соотношения между шагом спирали и ее диаметром и диаметром проволоки выбирают таким образом, чтобы облегчить размещение нагревателей в печи, обеспечить достаточную их жесткость, в максимально возможной степени исключить локальный перегрев витков самой спирали и в то же время не затруднить теплоотдачу от них к изделиям.

Чем больше диаметр спирали и чем меньше ее шаг, тем легче разместить в печи нагреватели, но с увеличением диаметра уменьшается прочность спирали, увеличивается склонность ее витков лечь друг на друга. С другой стороны, с увеличением частоты намотки увеличивается экранирующее действие обращенной к изделиям части ее витков на остальные и, следовательно, ухудшается использование ее поверхности, а также могут возникнуть местные перегревы.

Практика установила вполне определенные, рекомендуемые соотношения между диаметром проволоки (d ), шагом (t ) и диаметром спирали (D ) для проволоки Ø от 3 до 7 мм. Эти соотношения следующие: t ≥ 2d и D = (7÷10)·d для нихрома и D = (4÷6)·d - для менее прочных железохромоалюминиевых сплавов, таких как фехраль и т.п. Для более тонких проволок отношение D и d , а также t обычно берутся больше.

Заключение

В статье были рассмотрены различные аспекты, касающиеся расчета нагревателей электрических печей - материалы, примеры расчета с необходимыми справочными данными, ссылками на стандарты, иллюстрациями.

В примерах были рассмотрены методики расчета только проволочных нагревателей . Помимо проволоки из прецизионных сплавов для изготовления нагревателей может применяться и лента.

Расчет нагревателей не ограничивается выбором их размеров. Также необходимо определить материал, из которого должен быть сделан нагреватель, тип нагревателя (проволочный или ленточный), тип расположения нагревателей и другие особенности. Если нагреватель изготавливается в виде спирали, то необходимо определить количество витков и шаг между ними.

Надеемся, что статья оказалась Вам полезной. Мы допускаем её свободное распространение при условии сохранения ссылки на наш сайт http://www.сайт

В случае обнаружения неточностей, просим сообщить нам на адрес электронной почты info@сайт или с помощью системы "Орфус", выделив текст с ошибкой и нажав Ctrl+Enter.

Список литературы

  • Дьяков В.И. "Типовые расчеты по электрооборудованию" .
  • Жуков Л.Л., Племянникова И.М., Миронова М.Н., Баркая Д.С., Шумков Ю.В. "Сплавы для нагревателей" .
  • Сокунов Б.А., Гробова Л.С. "Электротермические установки (электрические печи сопротивления)" .
  • Фельдман И.А., Гутман М.Б., Рубин Г.К., Шадрич Н.И. "Расчет и конструирование нагревателей электропечей сопротивления" .
  • http://www.horss.ru/h6.php?p=45
  • http://www.electromonter.info/advice/nichrom.html

Нихром был изобретен в 1905 году Альбертом Маршем, который соединил никель (80%) и хром (20%). Сегодня существует около десяти модификаций сплавов различных марок. В качестве дополнительных легирующих примесей добавляется алюминий, марганец, железо, кремний, титан, молибден и т. д. Благодаря своим выдающимся качествам этот металл стал широко использоваться для производства электротехники.

Основные качества нихрома

Нихром отличается:

  • высокой жаростойкостью. При высоких температурах его механические свойства не меняются;
  • пластичностью, которая позволяет изготавливать из сплава нихромовые спирали, проволоки, ленты, нити;
  • простотой обработки. Изделия из нихрома хорошо свариваются, штампуются;
  • высокую стойкость к коррозии в различной среде.
  • сопротивление нихрома высокое.

Основные свойства

  • Плотность составляет 8200-8500 кг/м3.
  • Температура плавления нихрома — 1400 С.
  • Максимальная рабочая температура — 1100°С.
  • Прочность — 650-700 МПа.
  • Удельное сопротивление нихрома 1,05-1,4 Ом.

Маркировка нихромовой проволоки

Нихромовая проволока — прекрасный материал для различных электронагревательных элементов, которые используются практически во всех отраслях промышленности. Практически каждый бытовой нагревательный прибор имеет элементы, выполненные из нихрома.

Буквенная маркировка проволоки:

  • «Н» - используется, как правило, в нагревательных элементах.
  • «С» - применяется в элементах сопротивления.
  • «ТЭН» - предназначается для трубчатых электронагревателей.

Согласно отечественным стандартам, существуют несколько основных марок:

  • Двойная проволока Х20Н80. В состав сплава входит: никель — 74%, хром - 23%, а также по 1% железа, кремния и марганца.
  • Тройная Х15Н60. Сплав состоит из 60% никеля и 15% хрома. Третий компонент - железо (25%). Насыщение сплава железом позволяет значительно удешевить нихром, цена на который довольно высокая, и при этом сохранить его жаростойкость. Кроме того, повышается его обрабатываемость.
  • Наиболее дешевый вариант нихрома — Х25Н20. Это богатый железом сплав, в котором механические свойства сохраняются, но рабочая температура ограничена 900°С.

Применение нихрома

Благодаря своим качественным и уникальным характеристикам нихромовые изделия могут применяться там, где нужна надежность, прочность, устойчивость к химически агрессивной среде и очень высоким температурам.

Нихромовые спирали и проволока являются неотъемлемой частью практически всех видов нагревательных приборов. Нихром присутствует в тостерах, хлебопекарнях, обогревателях, духовках. Сплав также нашел применение в резисторах и реостатах, работающих при сильном нагреве. Имеется нихром и в электрических лампах и паяльниках. Нихромовые спирали обладают жаростойкостью и значительным сопротивлением, что позволяет их использовать в высокотемпературных печах сушки и обжига.

Находит применение и лом нихрома. Он переплавляется, и материал снова идет в дело. Сплав никеля с хромом используется в химических лабораториях. Данный состав не вступает в реакцию с большинством щелочей и кислот. Деформированные нагревательные нихромовые спирали применяют в электронных сигаретах.

По сравнению с ранее используемым для этих целей железом, изделия из нихрома более безопасны, не искрят, не ржавеют, не имеют оплавленных участков.


Температура плавления нихрома 1400°С, поэтому при приготовлении пищи не чувствуются посторонние запахи и гарь.

Инженеры до сих пор исследуют уникальные свойства этого материала, постоянно расширяя сферу его применения.

В домашних условиях нихромовая проволока используется для изготовления самодельного оборудования, электролобзиков и резаков, таких как, например, станок для резки пенопласта или дерева, паяльник, приспособление для выжигания по дереву, сварочные аппараты, бытовые обогреватели и т. д.

Самой популярной считается проволока Х20Н80 и Х15Н60.

Где можно приобрести нихромовую проволоку

Реализация данного продукта производится в рулонах (бухтах, катушках) либо же в виде ленты. Сечение нихромовой проволоки может быть в виде овала, круга, квадрата, а также трапеции, диаметр составляет в пределах от 0,1 до 1 миллиметра.

Где же взять или купить изделия из нихрома? Предлагаем рассмотреть самые распространенные и возможные варианты:

  1. Прежде всего, можно обратиться в организацию, изготавливающую данную продукцию и сделать заказ. Узнать точный адрес таких предприятий можно в специальных справочных по товарам и услугам, которые имеются практически во всех крупных городах и населенных пунктах. Оператор сможет подсказать, где приобрести, и даст номер телефона. Кроме того, информацию об ассортименте такой продукции можно найти на официальных сайтах производителей.
  2. Купить нихромовые изделия можно в специализированных магазинах, например, продающих радиодетали, материал для мастеров типа «Умелые руки» и т. д.

  3. Купить у частных лиц, торгующих радиодеталями, запасными частями и прочими металлическими изделиями.
  4. В любом хозяйственном магазине.
  5. На рынке можно приобрести какой-нибудь старый прибор, например лабораторный реостат, и взять нихром.
  6. Нихромовую проволоку также можно найти и у себя дома. К примеру, именно из нее изготовлена спираль электрической плитки.

Если необходимо сделать большой заказ, тогда больше всего подойдет именно первый вариант. Если нужно небольшое количество проволоки из нихрома, в этом случае можно рассматривать все остальные пункты списка. При покупке необходимо обязательно обратить внимание на маркировку.

Навивка нихромовой спирали

Сегодня нихромовая спираль является одним из основных элементов многих нагревательных приборов. После остывания нихром способен сохранять свою пластичность, благодаря чему спираль из такого материала можно легко снять, изменить ее форму или при необходимости подогнать под подходящий размер. Намотка спирали в промышленных условиях осуществляется автоматическим путем. В домашних условиях можно осуществить также ручную намотку. Рассмотрим подробнее, как это сделать.


Если не слишком важны параметры готовой нихромовой спирали в ее рабочем состоянии, при намотке можно произвести расчет, так сказать, «на глаз». Для этого следует подобрать нужное количество витков в зависимости от нагрева нихромового провода, при этом включая периодически спираль в сеть и уменьшая или увеличивая число витков. Такая процедура намотки очень простая, но может занять достаточно много времени, да и часть нихрома при этом расходуется впустую.

Для повышения простоты и точности расчета намотки спирали можно воспользоваться специальным онлайн-калькулятором.

Рассчитав необходимое количество витков, можно приступать к намотке на стержень. Не обрезая провод, следует осторожно подключить нихромовую спираль к источнику напряжения. Затем проверить правильность расчетов по намотке спирали. Важно учитывать, что для спиралей закрытого типа длина намотки должна быть увеличена на треть полученного при расчете значения.

Для обеспечения одинакового расстояния между соседними витками нужно вводить намотку в 2 провода: один - нихромовый, второй — любой медный или алюминиевый, с диаметром, который равен нужному зазору. Когда намотка будет окончена, вспомогательный провод следует аккуратно смотать.

Стоимость нихрома

Единственный недостаток, который имеет нихром, - цена. Так, двухкомпонентный сплав при покупке в розницу оценивается примерно в 1000 рублей за один килограмм. Стоимость марок нихрома с лигатурой — около 500-600 рублей.

Заключение

Выбирая продукцию из нихрома, необходимо учитывать данные о химическом составе интересующего товара, его электропроводность и сопротивление, физические характеристики диаметра, сечение, длину и т. д. Важно также поинтересоваться документацией соответствия. Кроме того, нужно уметь визуально отличать сплав от его, так сказать, «конкурентов». Правильность выбора материала является залогом надежности электротехники.

fb.ru

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​(R_1)​ в четыре раза меньше сопротивления резистора ​(R_2)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​(R_1)​ в 3 раза больше сопротивления резистора ​(R_2)​. Количество теплоты, которое выделится в резисторе 1


1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​(A_1)​ и ​(A_2)​ в этих проводниках за одно и то же время.

1) ​(A_1=A_2)​
2) (A_1=3A_2)
3) (9A_1=A_2)
4) (3A_1=A_2)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока (A_1)​ и ​(A_2) в этих проводниках за одно и то же время.


1) ​(A_1=A_2)​
2) (A_1=3A_2)
3) (9A_1=A_2)
4) (3A_1=A_2)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.


ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

ФОРМУЛЫ
1) ​(frac{q}{t})​
2) ​(qU)​
3) (frac{RS}{L})​
4) ​(UI)​
5) (frac{U}{I})​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

При выполнении этого задания следует:

2. Проанализировать левый столбец и осознать, что характеризуют приведенные величины (свойство тело, взаимодействие, состояние, изменение состояния и т.п.). В данном примере приведенные величины характеризуют состояние тела и их изменение связано с изменением состояния.

3. Проанализировать описанный в условии процесс и сопоставить физическим величинам характер их изменения в данном процессе.

4. Записать в таблицу цифры выбранных элементов правого столбца.

Задания для самостоятельной работы

147. Свинцовый шарик охлаждают в холодильнике. Как при этом меняется внутренняя энергия шарика, его масса и плотность вещества шарика?

Для каждой физической величины определите соответствующий характер изменения.

1) увеличилась

2) уменьшилась

3) не изменилась

Запишите в таблицу выбранные цифры под соответствующими буквами.

Цифры в ответе могут повторяться.

ВНУТРЕННЯЯ ЭНЕРГИЯ

ПЛОТНОСТЬ ВЕЩЕСТВА



Loading...Loading...